Range
"Range" creates a sequence of numbers, letters, and other functionalities between the given range. It has two "Limit Values", or optional one "Limit Value" with "Counter Value", a "Sequencer", an optional "Transitioner" with "Transition Step Value" from one value to another.
"Limit Values" are: "First Value" aka "first", and "Last Value" aka "last". "Counter Value" aka "counter" creates a fixed number of sequential values". "Sequencer" is a sequence designation that, with one of its four variations ( ... ,.. .., ,., ), turns "Limit Values" ON or OFF. Comma symbol for turning off. "Transitioner" is transition designation ( ,, ) that creates each "Sequence Value" in a range using "Transition Step Value". "Transition Step Value" is "Step Value" aka "step".
"first" is a smaller value, and "last" is a larger value.
"step" can be any value - positive, negative, even, odd, etc.
"Ascending Sequence" aka "Aseq".
"Descending Sequence" aka "Deseq".
"Simetric Ascending Sequence" aka "Simaseq".
"Simetric Descending Sequence" aka. "Simdeseq".
"Asimetric Ascending Sequence" aka "Asimaseq".
"Asimetric Descending Sequence" aka. "Asimdeseq".
If range is without "Transitioner" and "Transition Step Value", and if "First Value" is located on the left side of the "Sequencer", then it is "Aseq" range. If range is without "Transitioner" and "Transition Step Value", and if "First Value" is located on the right side of the "Sequencer", then it is "Deseq" range.
If "Transitioner" and "Transition Step Value" are located on the RIGHT side of the "Sequencer", and if "First Value" is on the LEFT side of the "Sequencer", then it is "Aseq" range. If "Transitioner" and "Transition Step Value" are located on the RIGHT side of the "Sequencer", and if "First Value" is on the RIGHT side of the "Sequencer", then it is "Deseq" range.
If "Transitioner" and "Transition Step Value" are located on the LEFT side of the "Sequencer", and if "First Value" is on the LEFT side of the "Sequencer", then it is "Deseq" range. If "Transitioner" and "Transition Step Value" are located on the LEFT side of the "Sequencer", and if "First Value" is on the RIGHT side of the "Sequencer", then it is "Aseq" range.
If "Transitioner" and different "Transition Step Values" are located on BOTH sides of the "Sequencer", and if "First Value" is on the LEFT side of the "Sequencer", then it is "Asimaseq" range. If "Transitioner" and different "Transition Step Values" are located on BOTH sides of the "Sequencer", and if "First Value" is on the RIGHT side of the "Sequencer", then it is "Asimdeseq" range.
first...last == (first)...(last) #> "Ascending Sequence" aka "Aseq"
last...first == (last)...(first) #> "Descending Sequence" aka "Deseq"
first...last,,step == (first)...(last),,(step) #> Aseq
last...first,,step == (last)...(first),,(step) #> Deseq
step,,first...last == (step),,(first)...(last) #> Deseq
step,,last...first == (step),,(last)...(first) #> Aseq
step,,first...last,,step == (step),,(first)...(last),,(step) #> "Simetric Ascending Sequence" aka "Simaseq"
step,,last...first,,step == (step),,(last)...(first),,(step) #> "Simetric Descending Sequence" aka "Simdeseq"
step1,,first...last,,step2 == (step1),,(first)...(last),,(step2) #> "Asimetric Ascending Sequence" aka "Asimaseq"
step3,,last...first,,step4 == (step3),,(last)...(first),,(step4) #> "Asimetric Descending Sequence" aka "Asimdeseq"
Aseq and Deseq - (Limit Values, Step Value)
x = 0
y = 5
a = +1 #> +1 == 1
b = -1
x...y == 0...5 #> 0 1 2 3 4 5 #> Aseq
x,..y == 0,..5 #> 1 2 3 4 5 #> -|-
x..,y == 0..,5 #> 0 1 2 3 4 #> -|-
x,.,y == 0,.,5 #> 1 2 3 4 #> -|-
y...x == 5...0 #> 5 4 3 2 1 0 #> Deseq
y,..x == 5,..0 #> 4 3 2 1 0 #> --|--
y..,x == 5..,0 #> 5 4 3 2 1 #> --|--
y,.,x == 5,.,0 #> 4 3 2 1 #> --|--
x...y,,a == 0...5,,+1 #> 0 1 2 3 4 5 #> Aseq
x,..y,,a == 0,..5,,+1 #> 1 2 3 4 5 #> -|-
x..,y,,a == 0..,5,,+1 #> 0 1 2 3 4 #> -|-
x,.,y,,a == 0,.,5,,+1 #> 1 2 3 4 #> -|-
y...x,,b == 5...0,,-1 #> 5 4 3 2 1 0 #> Deseq
y,..x,,b == 5,..0,,-1 #> 4 3 2 1 0 #> --|--
y..,x,,b == 5..,0,,-1 #> 5 4 3 2 1 #> --|--
y,.,x,,b == 5,.,0,,-1 #> 4 3 2 1 #> --|--
x = 0
y = 5
a = +1 #> +1 == 1
b = -1
a,,x...y == +1,,0...5 #> 5 4 3 2 1 0 #> Deseq
a,,x,..y == +1,,0,..5 #> 5 4 3 2 1 #> --|--
a,,x..,y == +1,,0..,5 #> 4 3 2 1 0 #> --|--
a,,x,.,y == +1,,0,.,5 #> 4 3 2 1 #> --|--
b,,y...x == -1,,5...0 #> 0 1 2 3 4 5 #> Aseq
b,,y,..x == -1,,5,..0 #> 0 1 2 3 4 #> -|-
b,,y..,x == -1,,5..,0 #> 1 2 3 4 5 #> -|-
b,,y,.,x == -1,,5,.,0 #> 1 2 3 4 #> -|-
Simaseq and Simdeseq - (Limit Values, Step Value)
x = 0
y = 5
a = +1 #> +1 == 1
b = -1
a,,x...y,,a == +1,,0...5,,+1 #> 5 4 3 2 1 0 1 2 3 4 5 #> Simaseq
a,,x,..y,,a == +1,,0,..5,,+1 #> 5 4 3 2 1 1 2 3 4 5 #> ---|---
a,,x..,y,,a == +1,,0..,5,,+1 #> 4 3 2 1 0 1 2 3 4 #> ---|---
a,,x,.,y,,a == +1,,0,.,5,,+1 #> 4 3 2 1 1 2 3 4 #> ---|---
b,,y...x,,b == -1,,5...0,,-1 #> 0 1 2 3 4 5 4 3 2 1 0 #> Simdeseq
b,,y,..x,,b == -1,,5,..0,,-1 #> 0 1 2 3 4 4 3 2 1 0 #> ---||---
b,,y..,x,,b == -1,,5..,0,,-1 #> 1 2 3 4 5 4 3 2 1 #> ---||---
b,,y,.,x,,b == -1,,5,.,0,,-1 #> 1 2 3 4 4 3 2 1 #> ---||---
Asimaseq and Asimdeseq - (Limit Values, Step Value)
x = 0
y = 6
a = +1 #> +1 == 1
b = +2 #> +2 == 2
c = -1
d = -2
a,,x...y,,b == +1,,0...6,,+2 #> 6 5 4 3 2 1 0 2 4 6 #> Asimaseq
a,,x,..y,,b == +1,,0,..6,,+2 #> 6 5 4 3 2 1 2 4 6 #> ---||---
a,,x..,y,,b == +1,,0..,6,,+2 #> 5 4 3 2 1 0 2 4 #> ---||---
a,,x,.,y,,b == +1,,0,.,6,,+2 #> 5 4 3 2 1 2 4 #> ---||---
c,,y...x,,d == -1,,6...0,,-2 #> 0 1 2 3 4 5 6 4 2 0 #> Asimdeseq
c,,y,..x,,d == -1,,6,..0,,-2 #> 0 1 2 3 4 5 4 2 0 #> ----|----
c,,y..,x,,d == -1,,6..,0,,-2 #> 1 2 3 4 5 6 4 2 #> ----|----
c,,y,.,x,,d == -1,,6,.,0,,-2 #> 1 2 3 4 5 4 2 #> ----|----